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Abstract – The parameters of the KLM and Mason’s
equivalent circuits in the thickness mode are presented
to include dielectric, elastic and piezoelectric loss.   The
models are compared under various boundary
conditions with and without acoustic layers to the
analytical solutions of the wave equation.   We show
that in all cases equivalence is found between the
analytical solution and the KLM and Mason’s
equivalent circuit models. It is noted that in order to
maintain consistency with the linear equations of
piezoelectricity and the wave equation care is required
when applying complex coefficients to the models.  The
effect of the piezoelectric loss component on the power
dissipated in the transducer is presented for loaded and
unloaded transducers to determine the significance of
the piezoelectric loss to transducer designers.  The effect
of the piezoelectric loss on the insertion loss was found
to be small.

I. INTRODUCTION

Analytical solutions to the wave equation in
piezoelectric materials can be quite cumbersome to derive
from first principles in all but a few cases.  Mason[1],[2]
was able to show that for one-dimensional analysis most of
the difficulties in deriving the solutions could be overcome
by borrowing from network theory.  He presented an exact
equivalent circuit that separated the piezoelectric material
into an electrical port and two acoustic ports through the
use of an ideal electromechanical transformer as shown in
Figure 1. The model has been widely used for free and
mass loaded resonators[3], transient response[4], material
constant determination[5], and a host of other
applications[6].  One of the perceived problems with the
model is that it required a negative capacitance at the
electrical port.  Although Redwood[4] showed that this
capacitance could be transformed to the acoustic side of the
transformer and treated like a length of the acoustic line it
was still thought to be “un-physical”.   In an effort to
remove circuit elements between the top of the transformer
and the node of the acoustic transmission line Krimholtz,
Leedom and Matthae[7] published an alternative equivalent

circuit as shown in Figure 1.  The model is commonly
referred to as the KLM model and has been used
extensively in the medical imaging community in an effort
to design high frequency transducers [8],[9],
multilayers[10], and arrays[11].  In the following sections
we present the circuit parameter for the KLM and Mason's
equivalent circuit  for the case where the piezoelectric,
dielectric and elastic constants are represented by complex
quantities to account for intrinsic loss in the material.

II. DESCRIPTION OF THE MODELS

General Description

The KLM and Mason’s model are shown in Figure 1 for the
thickness mode.  If the acoustic ports are shorted these
models reduce to the free resonator equation derived from
the linear piezoelectric equations and the wave equation [3]
which has been adopted by the IEEE Standard on
Piezoelectricity[12] for determination of the thickness
material constants.

The constants of each model are shown in Table 1.
In the KLM and Mason’s equivalent circuit an electrical
port is connected to the center node of the two acoustic
ports representing the front and back face of the transducer.
On the electrical port of the transformer all circuit elements
are standard electrical elements and the voltage is related to
the current via V =ZI where Z is an electrical impedance.
On the acoustical side of the transformer the force F and
the velocity v are related through F = Zav where Za is the
specific acoustic impedance Za ∝ ρvA where ρ is the
density, v is the longitudinal velocity of the piezoelectric
material and A is the area. It should be noted that the italic
v = ∂u/∂t  is a variable of the circuit model while the
straight v is a constant of the material.  The transformer is
an ideal electromechanical transformer that conserves
power during the transformation. The relationship between
the constants of the free resonator and the KLM and
Mason’s equivalent circuits are shown in Table 1 in terms
of the material constants of the free resonator.
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Losses

Although the material constants described in the IEEE
Standards on Piezoelectricity are defined in terms of real
coefficients a variety of authors (Holland [13],
Berlincourt[14], Sittig [15], Katz[6], McSkimmin[16]) have
suggested or used complex coefficients to describe the one
or more loss components in many common piezoelectric
materials.

Table 1.  The complex material constants and the
KLM and Masons parameters
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In the IEEE Standard of Piezoelectricity cautions are given
about losses, dispersion, field, stress and time dependence
(aging) of the material constants for linear piezoelectric
materials.  In the present study the material coefficients are
defined as complex constants which assumes that the
applied signals are small (extrinsic effects negligible), the
sample is well aged and that we are in a normal rather than
an anomalous dispersion regime where the frequency
dependence of the material coefficients are nearly flat.
Using the complex material constants the circuit parameters
Γ, N, φ, Z0, M, C0 are now all treated as

Figure 1. KLM and Mason’s equivalent circuits. Quantities
in figure are defined in Table 1.

complex quantities.  Identities for trigonometric functions
with complex arguments can be found by expanding the
trigonometric function in exponential form.  A list of these
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identities can be found in earlier work on equivalent
lumped circuit constants of free piezoelectric resonators
[17].

Consistency in the application of loss

It is worth noting that care must be taken when
applying losses to the Mason and KLM equivalent circuits.
In order to emphasize these points consider the case where
the elastic and dielectric constants including losses have
been determined from the resonance spectra of a free
resonator and the electromechanical coupling is assumed to
be real and determined from.
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and h33 coefficients (ie. these constants are complex).
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This means that in order to reproduce the fit to the data
determined from the free resonator equation using either
Mason’s or the KLM equivalent circuit the piezoelectric
constant in the equations for the turns ratio N (or the M
coefficient for the KLM model) must be treated as complex
as described in equations 3 and 4.  If these turns ratio
coefficients are treated as real then it can be shown that for
both the KLM and Mason’s model we are assigning a non
zero phase angle to kt
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III. M ODELING

 Open and Short Circuit Acoustic Ports

 The KLM and Mason’s equivalent circuits were compared
under half open, full open and short circuit conditions on
the acoustic ports.   The material constants (Motorola
3203HD) used for this comparison are shown in Table 2
along with the equivalent circuit parameters of each mode.
Impedance data determine from the analytical solutions,
and the KLM and Mason’s equivalent circuit are shown in
Figure 2.  All data for each of the models is found to
overlap.

Figure 2.  A comparison of the analytical solution, Mason's
and the KLM model under various acoustic boundary
conditions.  All models were found to overlap.

.
Layered Transducer Modeling

The analytical solution for the impedance of a
piezoelectric layer on a substrate was derived from the
wave equation by Lakin, Kline and McCarron[18], A more
recent derivation by Lukacs et al[19] extended the solution
to include loss in the elastic, dielectric and piezoelectric
constants and first order dispersion in the dielectric
constant.   These solutions are valid for all cases where the
lateral dimensions of the acoustic layer and the
piezoelectric layer are much larger than either layer
thickness.

In the following section Mason's and KLM
equivalent circuits are compared to the analytical solution
for a high impedance backing (stainless steel) and a low
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impedance backing (epoxy) to investigate the effects of
including an acoustic layers on the various models.

 Figure 3.  A comparison of the analytical solution, Mason's
and the KLM model with stainless steel and epoxy backing
layers.  All models were found to overlap.

The geometry, stiffness, density and velocity, of the each of
the backing layers are listed in Table 3.  The piezoelectric
properties for the Motorola 3203 HD material used in this
simulation are shown in Table 2.  The complex material
properties were determined using Smits’ method[20].

The models are similar to the models presented in
Figure 1 however each model also has an acoustic
transmission line element attached to one of the acoustic
ports of the piezoelectric to represent the backing layer.

The results are shown in Figure 3.  The analytical
soloution, and the KLM and Mason’s equivalent circuit
were found to produce identical  impedance curves if the
loss was treated consistantly as discussed previously.

B. Effect of Piezoelectric Loss on Power Spectrum

The electrical power factor for the free resonator
shown in Figure 2 calculated using the material constants in
Table 2 is shown in Figure 4.    The electrical power factors
for the same resonator with kt real, e33 real and h33 real
calculated using equation 2 are also shown in the figure.  It
is clear for the free resonator significant difference in the
power spectra are apparent below, above and between  fS
and fP.  In the case where kt is assumed to be real,  the
power dissipated above and below resonance is symetric
about the midpoint between fS and fP.  This means that one
can assess the validity of the assumption of kt  real by
plotting the R/Z data as a function of frequency and noting

whether the dissipation is symetric about the midpoint
between fS and fP.  In order to see the effect of the
piezoelectric loss on a tuned transducer rather than a free
resonator we have used Mason’s equivalent circuit to model
a backed 25 MHz transducer radiating into water.  The
power dissipated in the piezoelectric element of the
transducer and the 2 way insertion loss are shown in
Figures 5 and 6.  The piezoelectric material properties are
from Table 2.  The dimensions of the piezoelectric were
0.1mm x 1mm squared.  The tuning inductor was 492 nH’s.
The source inpedance was 50 Ω.  The specific acoustic
impedance of water was Z= ρAv = 6 kg/s. The density,
length and velocity of the backing layer were  ρb = 1700
kg/m3, l = 0.002m and  v = 2700(1+0.005i).
Figure 4.  Electrical power factor for the measured

resonator and assuming lossless material constants

The power dissipated in the piezoelectric element is seen to
have a signifigant dependence on the piezoelectric loss
designation.  This means that for S/N calculations, duty
cycling, and heating effects properly including the
piezoelectric loss can aid in acurately determining these
aspects of the transducer design.

The effect of the loss designation is not as
apparent on the general shape of the insertion loss curve
shown in Figure 6.   However at fS the curves deviate by
about 3 dB from each other. It is clear given the other
approximations (electrode mass, sheet resistivity, potting
effects, mode coupling coupling, dispersion and parasitic
impedances are all neglible) assumed in the modeling that
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the piezoelectric loss has very little effect on the overall
shape and bandwith of the insertion loss.

Table 2.  Complex material constants determined from a
average of 5 samples.  KLM and Masons parameters for
Motorola 3203HD material.

Material Constants and Geometry of Piezoelectric Material
(Motorola 3203HD)

ρ = 7800 kg/m3    t = 0.001 m  Diameter = 0.015 m

c33
D  (x 1011 N/m2) = 1.77 (1 + 0.023i)

ε 33
S  (x 10-8 F/m) = 1.06 (1 - 0.053i)

33h  (x 109 V/m) = 2.19 (1 + 0.029i)

kt  = 0.536 ( 1 - 0.005i)
C0 (nF) = 1.87 (1 – 0.053i)
N (C/m) = 4.11 (1 - 0.024i)

Dv (m/s) = 4674 (1 + 0.012i)

Γ/ω (x10-4 s/m) = 2.10 (1 – 0.012i)
Mω (x105 Vs/mkg) = 3.33 (1 + 0.017i)

Table 3.  The acoustic properties of the epoxy and stainless
steel backing materials

t = 0.001 m        Diameter = 0.015 m

Epoxy
ρ(kg/m3) = 1100

c33
D  (x 109 N/m2) = 5.3 (1 + 0.1i)

Dv (m/s) = 2200 (1 + 0.05i)

Γ/ω (x10-4 s/m) = 4.53 (1 – 0.05i)
Stainless Steel

ρ(kg/m3) = 7890

c33
D  (x 1011 N/m2) = 2.645 (1 + 0.002i)

Dv (m/s) = 5790 (1 + 0.001i)

Γ/ω (x10-4 s/m) = 1.727 (1 – 0.001i)

 It also should be noted that setting the dielectric
and elastic losses to zero was found to have very little effect
on the insertion loss curve.  The general shape of the
insertion loss was found to be primarly dependent on the
source impedance, tunning inductor, acoustic impedance of
the backing and the water and the real parts of the material
coefficients.  It is interesting to note that for the

Figure 5. The electrical power dissipated in the
piezoelectric element of the transducer described in text for
kt measured, kt real, e33  ∝ N real, h33 real., and M real.

Figure 6.  The insertion loss for the various piezoelectric
loss designations.

Motorola 3203 HD material that larger errors in the
modeling occur due to the inconsistancies in the application
of the loss compared to the assumption that kt is a real
number.

IV. CONCLUSIONS

The parameters of the KLM and Mason’s equivalent
circuits in the thickness mode were presented for the case
where dielectric, elastic and piezoelectric losses are present.
The models were compared and found to be equivalent
under a variety of boundary conditions when the loss was
applied consistently in each of the models.  The effect of
piezoelectric, dielectric and elastic loss coefficients on the
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overall shape of the insertion loss curve was found to be
small and independent of the designation of piezoelectric
loss. The dissipated power in the transducer was found to
be dependent on the piezoelectric loss designation, which
suggested that the piezoelectric loss is important for
determining heating effects in the transducer.
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